SYNTHESIS AND STRUCTURE OF NOVEL HALOSULFURANES, 5-CHLORO- AND 5-BROMO-5,11-EPOXY-6,11-DIHYDRODIBENZO[ b,e ]THIEPINS

Kazuhiro Onogi

Tokyo Research Laboratories, Kowa Co., Ltd., 2-17-43, Noguchi-cho, Higashimurayama, 189, Japan

Masaru Kido

Laboratories of Natural Product Chemistry, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima, 771-01, Japan Mikio Hori<sup>\*</sup>, Tadashi Kataoka, and Hiroshi Shimizu

Gifu College of Pharmacy, 6-1, Mitahora-higashi 5-chome, Gifu 502, Japan

Summary: Novel halosulfuranes, 5-chloro- and 5-bromo-5,11-epoxy-6,11-dihydrodibenzo[ b,e ]thiepins were synthesized. The covalency of the sulfur-halogen bond was established by  $^{1}$ H-NMR and MS(field desorption) data and by an X-ray crystal structure determination.

Halosulfuranes have been studied for the last ten years.<sup>1-3)</sup> However, there are so far few examples that confirmed the covalent nature of the sulfur-halogen bond.<sup>2)</sup> In the course of our intensive studies on thiepin chemistry we have succeeded in synthesizing novel halosulfuranes, 5-chloro- and 5-bromo-5,11-epoxy-6,11-dihydrodibenzo[b,e]thiepins (<u>2a,b</u> and <u>3a,b</u>). We wish to report here the synthesis of <u>2a,b</u> and <u>3a,b</u> and the covalency of the sulfur-halogen bond established by the <sup>1</sup>H-NMR and MS(field desorption) spectra, and an X-ray structure determination.



On the treatment of 6,11-dihydrodibenzo[b,e]thiepin-11-ols  $(\underline{1a},\underline{b})^{4}$  with 1 eq. of Nchlorosuccinimide or N-bromosuccinimide at room temperature in CH<sub>2</sub>Cl<sub>2</sub> for 1-3 hrs, the corresponding halosulfuranes ( $\underline{2a},\underline{b}$  and  $\underline{3a},\underline{b}$ ) were isolated as stable crystals. Chlorosulfuranes  $\underline{2a},\underline{b}$  were more stable thermally and hydrolytically than bromosulfuranes  $\underline{3a},\underline{b}$  during the process of recrystallization. In order to investigate the covalency of  $\underline{2}$  and  $\underline{3}$ , we synthesized the corresponding thiepinium salts and compared their physico-chemical data with those of the halosulfuranes. On treatment with AgClO<sub>4</sub> or AgBF<sub>4</sub> for 24 hrs at room temperature,  $\underline{2a},\underline{b}$ 

| Table.                       | Yield                                     | s , Melti                                     | ng point:                    | s , <sup>1</sup> H-NMR ( 200      | MHz ) data , and M                                           | IS ( field desorption )                                                   | data for 2a,                                             | <u>b</u> - <u>4a, b</u>                                          |
|------------------------------|-------------------------------------------|-----------------------------------------------|------------------------------|-----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
| Compd.                       | Yield<br>( % )                            | mp <sup>a</sup> )<br>(°C)                     | solvent                      | с <sub>4</sub> -н                 | <sup>1</sup> H-NMR ( 200 MHz<br>other aromatic<br>absorption | ) Spectral data <sup>b)</sup><br>CH <sub>2</sub> at $c_6^{d}$             | 2-Me 11-Me                                               | MS Spectral data <sup>e)</sup><br>( field desorption )           |
|                              |                                           |                                               | cDCI <sub>3</sub>            | 9.24-9.11                         | 7.71-7.02(12H)                                               | 5.46, 5.20(18.2Hz)                                                        |                                                          | 340*,338*,303**,302***                                           |
| 67                           | 0.05                                      | CC 1 - 9C 1                                   | co <sup>3</sup> oo           | 8.34-8.25                         | 7.90-7.14(12H)                                               | 5.55, 4.39(17.6Hz)                                                        |                                                          | 320*****,302***                                                  |
| ę                            |                                           |                                               | CDC13                        | 8.88(8.3Hz) <sup>c)</sup>         | 7.43-7.30(4H)<br>7.09-6.98(2H)                               | 5.28, 5.10(18.4Hz)                                                        | 2.42 2.19                                                | 547 <b>****</b> ,545 <b>****</b><br>292*,290*,255 <b>*</b> *     |
| 07                           | 7.9.5                                     | 6CT-9CT                                       | cp3op                        | 8.03(9.0Hz) <sup>c)</sup>         | 7.65-7.35(5H)<br>7.22-7.12(1H)                               | 5.35, 4.31(17.7Hz)                                                        | 2.45 2.34                                                | 272*****                                                         |
| ć                            | c<br>F                                    |                                               | CDC13                        | 9.33-9.22                         | 7.73-7.04(12H)                                               | 5.44, 5.33(18.2Hz)                                                        |                                                          | 688****,686****<br>385*,383*,303**                               |
|                              | /0.0/                                     | 061-67T                                       | ന <sub>3</sub> ന             | 8.38-8.30                         | 7.94-7.14(12H)                                               | 5.55, 4.41(18.1Hz)                                                        |                                                          | 320*****, 302***                                                 |
| ę                            | r<br>0 V                                  | 00 L 30 L                                     | cDC13                        | 8.98(8.3Hz) <sup>c)</sup>         | 7.44-7.25(4H)<br>7.10-7.00(2H)                               | 5.28, 5.21(18.2Hz)                                                        | 2.42 2.20                                                |                                                                  |
| 8                            |                                           | 0CT-CCT                                       | cD <sub>3</sub> 0D           | 8.07(8.8Hz) <sup>c)</sup>         | 7.65-7.35(5H)<br>7.23-7.10(1H)                               | 5.36, 4.36(17.8Hz)                                                        | 2.45 2.34                                                |                                                                  |
| 43                           | 1                                         |                                               | cDC1 <sub>3</sub>            | 8.63-8.53                         | 7.84-7.07(12H)                                               | 5.31, 4.63(18.0Hz)                                                        |                                                          | 303**,302***                                                     |
| <sup>Y=BF</sup> 4<br>(Y=C10, | 87.8                                      | 212-214<br>222-225)                           | cD <sub>3</sub> 0D           | 8.24-8.17                         | 7.91-7.14(12H)                                               | 5.54, 4.30(18.1Hz)                                                        |                                                          | 320*****,303**                                                   |
| 4 <del>1</del>               | -<br>-<br>-                               |                                               | CDC13                        | 8.34(8.1Hz) <sup>c)</sup>         | 7.50-7.36(4H)<br>7.16-7.06(2H)                               | 5.20, 4.62(18.8Hz)                                                        | 2.46 2.32                                                | 255**                                                            |
| r=clu4<br>(Y=BF4             | 89.4<br>92.7                              | 18/-189<br>203-204)                           | cD <sub>3</sub> 0D           | 7.95(8.8Hz) <sup>c)</sup>         | 7.64-7.37(5H)<br>7.22-7.11(1H)                               | 5.35, 4.25(17.5Hz)                                                        | 2.45 2.35                                                | 255**                                                            |
| a) Me.<br>c) dot<br>***** =  | lting po<br>blet.<br>M <sup>+</sup> -X+OH | int with<br>d) doub1<br>or M <sup>+</sup> -Y+ | decompos<br>ets of dc<br>OH. | ition. b) Chem<br>oublet. e) EC=1 | ical shifts(6) are<br>4-16 mA , * =M <sup>+</sup> , *        | reported in parts per<br>** =M <sup>+</sup> -X or M <sup>+</sup> -Y , *** | million downf<br>=M <sup>+</sup> -HX or M <sup>+</sup> - | ield from Me <sub>4</sub> Si.<br>HY , **** =2M <sup>+</sup> -X , |

afforded 5,11-epoxy-6,11-dihydrodibenzo[b,e]thiepinium salts (<u>4a,b</u> Y=BF<sub>4</sub>, ClO<sub>4</sub>) in high yields. <u>4a,b</u> (Y=ClO<sub>4</sub>) were also obtained by the treatment of 6,11-dihydrodibenzo[b,e]-



thiepin-11-ol 5-oxide derivatives  $(\underline{5a}, \underline{b})$  with 70% HClO<sub>4</sub> in good yields.<sup>5)</sup> The <sup>1</sup>H-NMR data of these sulfonium salts (<u>4a, b</u>) were compared with those of halosulfuranes (<u>2a, b</u> and <u>3a, b</u>). Their yields, melting points, <sup>1</sup>H-NMR data, and MS(field desorption) data for compounds <u>2a, b</u>-<u>4a, b</u> are shown in the Table.<sup>6</sup>

Martin et al. have determined that compound <u>6</u> is a chlorosulfurane on the basis of  $^{1}$ H-NMR and MS(field desorption) data.<sup>3)</sup> The evidence for the covalent nature

of the S-Cl bond is a large downfield shift for the proton *ortho* to sulfur in the fused phenyl ring of <u>6</u> ( $\delta$ =9.33 ppm in CDCl<sub>3</sub>) relative to that in the analogous oxosulfonium salt <u>7</u> ( $\delta$ =8.10 ppm in CDCl<sub>3</sub>) in the <sup>1</sup>H-NMR absorption and the presence of a molecular ion in the MS(field desorption) spectrum. A similar downfield shift has been observed for <u>2a,b</u> and <u>3a,b</u> in CDCl<sub>3</sub>. The chemical shift of C<sub>4</sub>-H (proton *ortho* to sulfur in the fused ring) for <u>2a,b</u> and <u>3a,b</u> is distinctly  $\delta$ =0.6-0.7 ppm downfield from that for <u>4a,b</u> (see Table). In addition, molecular ions of <u>2a,b</u> and <u>3a</u> are also observed in their MS(field desorption in CDCl<sub>3</sub>) spectra as weak



Figure. ORTEP Drawing of 2a.C1CH, CH, C1 Adduct

peaks. These results clearly suggest that the covalency of the sulfur-halogen bond for  $\underline{2a}, \underline{b}$  and  $\underline{3a}, \underline{b}$  is closely parallel to that for  $\underline{6}$ . However, neither the large downfield shift for  $C_4$ -H nor the presence of the molecular ion peaks are observed, when they are measured in  $CD_3OD$ . These spectra resemble very closely those of  $\underline{4a}, \underline{b}$  in  $CD_3OD$ . This result means that the sulfur-halogen bond is almost completely dissociated in  $CD_3OD$  and is the similar bond like  $\underline{4a}, \underline{b}$ .

In order to obtain further information regarding the structure and covalency in the halosulfuranes, the X-ray crystal structure analysis of  $\underline{2a}^{7}$  was carried out. Crystal data: C20H15ClOS·ClCH2CH2Cl, triclinic, space group P1, a=9.401(3), b=10.317(4), c= 11.506(3)Å,  $\alpha$ =100.97(3),  $\beta$ =109.24(2),  $\gamma$ = 82.19(3)°,  $Dx=1.41 \text{ g/cm}^3$  and  $\mu(MoK\alpha)=5.5$ cm<sup>-1</sup>. The cell dimensions and intensities were measured on a Syntex R<sub>3</sub> four-circle diffractometer with a graphite-monochromated MoK $\alpha$  radiation with  $\omega$ -scan mode for 2 $\theta$  less than 50°. A total of 3634 independent reflections were collected, among which 3262 [I>1.960 (I)] were stored as observed. The

4340

structure was solved by the direct method using MULTAN in Synthex XTL program.<sup>8)</sup> Blockdiagonal least-squares method was applied to the refinement, the final R-value being 4.6%. The ORTEP diagram of  $2a^{7}$  is shown in the Figure. The bond angles about sulfur are Cl(1)-S-O= 174.8° (bent away from the lone pair of electrons on sulfur), Cl(1)-S-C(20)=85.4°, Cl(1)-S-C (18)=92.7°, O-S-C(18)=91.7°, O-S-C(20)=96.5°, C(18)-S-C(20)=100.4°. This result reveals approximate trigonal-bipyramidal around sulfur. The bond lengths around sulfur are Cl(1)-S= 2.749(1)Å, S-O=1.639(2)Å, S-C(18)=1.797(3)Å, S-C(20)=1.817(3)Å. The apical S-Cl bond length (2.749Å) is ca. 0.72Å longer than the sum of the covalent radii (2.03Å)<sup>9)</sup> and the apical S-O bond length (1.639Å) is ca. 0.06Å shorter than the sum of the covalent radii (1.70Å).<sup>9)</sup> The 37% elongation in the apical S-Cl bond revealed in the X-ray structure of <u>2a</u> clearly indicates the high degree of polarization of the three-center four-electrons hypervalent bond. This polarization is also reflected on studies of <sup>1</sup>H-NMR and MS(field desorption) data in CD<sub>3</sub>OD.

The present investigation confirms the approximate trigonal-bipyramidal geometry around sulfur of halosulfuranes ( $\underline{2a}, \underline{b}$  and  $\underline{3a}, \underline{b}$ ) but the covalent sulfur-halogen bond is rather weak, so it shows completely ionic bond character in  $CD_2OD$ .

## REFERENCES AND FOOTNOTES

- D. C. Owsley, G. K. Helmkamp, and M. F. Rettig, J. Am. Chem. Soc., <u>91</u>, 5239 (1969); C. R. Johnson and J. J. Rigau, *ibid.*, <u>91</u>, 5398 (1969); J. C. Martin and E. F. Perozzi, *ibid.*, <u>96</u>, 3155 (1974); P. Livant and J. C. Martin, *ibid.*, <u>99</u>, 5761 (1977); P. H. W. Lau and J. C. Martin, J. C. S. Chem. Commun., <u>1977</u>, 521; L. J. Adzima, E. N. Dueslev, and J. C. Martin, J. Org. Chem., <u>42</u>, 4001 (1977); L. J. Adzima, C. C. Chiang, I. C. Paul, and J. C. Martin, J. Am. Chem. Soc., 100, 953 (1978).
- N. C. Bauenziger, R. E. Buckles, R. J. Maner, and T. D. Simpson, J. Am. Chem. Soc., <u>91</u>, 5749 (1969); A. J. Arduengo and E. M. Burgess, *ibid.*, <u>99</u>, 2376 (1977); L. D. Martin, E. F. Perozzi, and J. C. Martin, *ibid.*, <u>101</u>, 3595 (1979); W. Y. Lam, E. N. Duesler, and J. C. Martin, *ibid.*, <u>103</u>, 127 (1981).
- 3) T. M. Balthazor and J. C. Martin, J. Am. Chem. Soc., 97, 5634 (1975), 99, 152 (1977).
- 4) M. Hori, T. Kataoka, H. Shimizu, and K. Onogi, Yakugaku Zasshi, 98, 1189 (1978).
- 5) M. Hori, T. Kataoka, H. Shimizu, and K. Onogi, Chem. Pharm. Bull. (Tokyo), 26, 2811 (1978).
- 6) All compounds gave satisfactory elemental analysis.
- 7) In order to get a fine crystal of <u>2a</u> suitable for the X-ray analysis, we attempted so many times to recrystallize <u>2a</u> from several solvents, and finally we succeeded in obtaining a very fine crystal as a 1:1-adduct of <u>2a</u> and C1CH<sub>2</sub>CH<sub>2</sub>Cl. We therefore performed the X-ray analysis of the 1:1-adduct.
- 8) G. Mermain, P. Main, and M. M. Woolfson, Acta Crystallogr., Sect. A, 27, 368 (1971).
- 9) L. Pauling "The Nature of the Chemical Bond ", 3rd ed.; Cornell University Press: Ithaca, N. Y. 1960; p 260.

(Received in Japan 3 June 1983)